团队是人类成就的核心。在过去的半个世纪中,心理学家已经确定了五个跨文化有效的人格变量:神经质,外向性,开放性,尽职尽责和同意。前四个与团队绩效显示一致的关系。然而,令人愉快的(和谐,无私,谦虚和合作)表现出与团队绩效的无关紧要和高度可变的关系。我们通过计算建模解决这种不一致。基于代理的模型(ABM)用于预测人格特质对团队合作的影响,然后使用遗传算法来探索ABM的限制,以发现哪种特征与最佳和最差的表现相关,以解决与与最差的团队相关的问题,以解决与问题有关的问题。不同级别的不确定性(噪声)。探索所揭示的新依赖性通过分析迄今为止最大的团队绩效数据集的先前未观察到的数据来证实,其中包括593个团队中的3,698个个人,从事5,000多个没有不确定性的小组任务,在10年内收集了不确定性。我们的发现是,团队绩效和同意之间的依赖性受到任务不确定性的调节。以这种方式将进化计算与ABM相结合,为团队合作的科学研究,做出新的预测以及提高我们对人类行为的理解提供了一种新方法。我们的结果证实了计算机建模对发展理论的潜在实用性,并阐明了随着工作环境的越来越流畅和不确定的启示。
translated by 谷歌翻译
ICECUBE是一种用于检测1 GEV和1 PEV之间大气和天体中微子的光学传感器的立方公斤阵列,该阵列已部署1.45 km至2.45 km的南极的冰盖表面以下1.45 km至2.45 km。来自ICE探测器的事件的分类和重建在ICeCube数据分析中起着核心作用。重建和分类事件是一个挑战,这是由于探测器的几何形状,不均匀的散射和冰中光的吸收,并且低于100 GEV的光,每个事件产生的信号光子数量相对较少。为了应对这一挑战,可以将ICECUBE事件表示为点云图形,并将图形神经网络(GNN)作为分类和重建方法。 GNN能够将中微子事件与宇宙射线背景区分开,对不同的中微子事件类型进行分类,并重建沉积的能量,方向和相互作用顶点。基于仿真,我们提供了1-100 GEV能量范围的比较与当前ICECUBE分析中使用的当前最新最大似然技术,包括已知系统不确定性的影响。对于中微子事件分类,与当前的IceCube方法相比,GNN以固定的假阳性速率(FPR)提高了信号效率的18%。另外,GNN在固定信号效率下将FPR的降低超过8(低于半百分比)。对于能源,方向和相互作用顶点的重建,与当前最大似然技术相比,分辨率平均提高了13%-20%。当在GPU上运行时,GNN能够以几乎是2.7 kHz的中位数ICECUBE触发速率的速率处理ICECUBE事件,这打开了在在线搜索瞬态事件中使用低能量中微子的可能性。
translated by 谷歌翻译
基于AI的推荐系统已成功应用于许多域(例如,电子商务,提要排名)。医学专家认为,将这种方法纳入临床决策支持系统可能有助于减少医疗团队的错误并改善治疗过程中的患者结果(例如,创伤复苏,手术过程)。但是,已经进行了有限的研究来开发自动数据驱动的治疗决策支持。我们探索了构建治疗建议系统以提供下一分钟活动预测的可行性。该系统使用患者环境(例如人口统计和生命体征)和过程上下文(例如活动)来连续预测将在下一分钟进行的活动。我们在预先录制的创伤复苏数据集上评估了我们的系统,并对不同模型变体进行了消融研究。对于61种活动类型,最佳模型的平均F1得分为0.67。我们包括医疗团队的反馈并讨论未来的工作。
translated by 谷歌翻译
湍流的分析是融合等离子体物理学中的重要面积。目前的理论模型基于某些等离子体密度结构的演变量化湍流程度,称为Blob。在这项工作中,我们通过在合成数据上训练掩模R-CNN模型和合成和实际数据测试的掩模R-CNN模型,跟踪这些BLOB在高频视频数据中的形状和位置。因此,我们的模型有效地跟踪了合成和真实实验GPI数据的BLOB结构,显示其前景作为估计与Tokamak等离子体的边缘湍流相关的BloB统计的强大工具。
translated by 谷歌翻译
Designing experiments often requires balancing between learning about the true treatment effects and earning from allocating more samples to the superior treatment. While optimal algorithms for the Multi-Armed Bandit Problem (MABP) provide allocation policies that optimally balance learning and earning, they tend to be computationally expensive. The Gittins Index (GI) is a solution to the MABP that can simultaneously attain optimality and computationally efficiency goals, and it has been recently used in experiments with Bernoulli and Gaussian rewards. For the first time, we present a modification of the GI rule that can be used in experiments with exponentially-distributed rewards. We report its performance in simulated 2- armed and 3-armed experiments. Compared to traditional non-adaptive designs, our novel GI modified design shows operating characteristics comparable in learning (e.g. statistical power) but substantially better in earning (e.g. direct benefits). This illustrates the potential that designs using a GI approach to allocate participants have to improve participant benefits, increase efficiencies, and reduce experimental costs in adaptive multi-armed experiments with exponential rewards.
translated by 谷歌翻译
Quadruped robots are currently used in industrial robotics as mechanical aid to automate several routine tasks. However, presently, the usage of such a robot in a domestic setting is still very much a part of the research. This paper discusses the understanding and virtual simulation of such a robot capable of detecting and understanding human emotions, generating its gait, and responding via sounds and expression on a screen. To this end, we use a combination of reinforcement learning and software engineering concepts to simulate a quadruped robot that can understand emotions, navigate through various terrains and detect sound sources, and respond to emotions using audio-visual feedback. This paper aims to establish the framework of simulating a quadruped robot that is emotionally intelligent and can primarily respond to audio-visual stimuli using motor or audio response. The emotion detection from the speech was not as performant as ERANNs or Zeta Policy learning, still managing an accuracy of 63.5%. The video emotion detection system produced results that are almost at par with the state of the art, with an accuracy of 99.66%. Due to its "on-policy" learning process, the PPO algorithm was extremely rapid to learn, allowing the simulated dog to demonstrate a remarkably seamless gait across the different cadences and variations. This enabled the quadruped robot to respond to generated stimuli, allowing us to conclude that it functions as predicted and satisfies the aim of this work.
translated by 谷歌翻译
Real-world robotic grasping can be done robustly if a complete 3D Point Cloud Data (PCD) of an object is available. However, in practice, PCDs are often incomplete when objects are viewed from few and sparse viewpoints before the grasping action, leading to the generation of wrong or inaccurate grasp poses. We propose a novel grasping strategy, named 3DSGrasp, that predicts the missing geometry from the partial PCD to produce reliable grasp poses. Our proposed PCD completion network is a Transformer-based encoder-decoder network with an Offset-Attention layer. Our network is inherently invariant to the object pose and point's permutation, which generates PCDs that are geometrically consistent and completed properly. Experiments on a wide range of partial PCD show that 3DSGrasp outperforms the best state-of-the-art method on PCD completion tasks and largely improves the grasping success rate in real-world scenarios. The code and dataset will be made available upon acceptance.
translated by 谷歌翻译
When robots learn reward functions using high capacity models that take raw state directly as input, they need to both learn a representation for what matters in the task -- the task ``features" -- as well as how to combine these features into a single objective. If they try to do both at once from input designed to teach the full reward function, it is easy to end up with a representation that contains spurious correlations in the data, which fails to generalize to new settings. Instead, our ultimate goal is to enable robots to identify and isolate the causal features that people actually care about and use when they represent states and behavior. Our idea is that we can tune into this representation by asking users what behaviors they consider similar: behaviors will be similar if the features that matter are similar, even if low-level behavior is different; conversely, behaviors will be different if even one of the features that matter differs. This, in turn, is what enables the robot to disambiguate between what needs to go into the representation versus what is spurious, as well as what aspects of behavior can be compressed together versus not. The notion of learning representations based on similarity has a nice parallel in contrastive learning, a self-supervised representation learning technique that maps visually similar data points to similar embeddings, where similarity is defined by a designer through data augmentation heuristics. By contrast, in order to learn the representations that people use, so we can learn their preferences and objectives, we use their definition of similarity. In simulation as well as in a user study, we show that learning through such similarity queries leads to representations that, while far from perfect, are indeed more generalizable than self-supervised and task-input alternatives.
translated by 谷歌翻译
and widely used information measurement metric, particularly popularized for SSVEP- based Brain-Computer (BCI) interfaces. By combining speed and accuracy into a single-valued parameter, this metric aids in the evaluation and comparison of various target identification algorithms across different BCI communities. To accurately depict performance and inspire an end-to-end design for futuristic BCI designs, a more thorough examination and definition of ITR is therefore required. We model the symbiotic communication medium, hosted by the retinogeniculate visual pathway, as a discrete memoryless channel and use the modified capacity expressions to redefine the ITR. We use graph theory to characterize the relationship between the asymmetry of the transition statistics and the ITR gain with the new definition, leading to potential bounds on data rate performance. On two well-known SSVEP datasets, we compared two cutting-edge target identification methods. Results indicate that the induced DM channel asymmetry has a greater impact on the actual perceived ITR than the change in input distribution. Moreover, it is demonstrated that the ITR gain under the new definition is inversely correlated with the asymmetry in the channel transition statistics. Individual input customizations are further shown to yield perceived ITR performance improvements. An algorithm is proposed to find the capacity of binary classification and further discussions are given to extend such results to ensemble techniques.We anticipate that the results of our study will contribute to the characterization of the highly dynamic BCI channel capacities, performance thresholds, and improved BCI stimulus designs for a tighter symbiosis between the human brain and computer systems while enhancing the efficiency of the underlying communication resources.
translated by 谷歌翻译
A step-search sequential quadratic programming method is proposed for solving nonlinear equality constrained stochastic optimization problems. It is assumed that constraint function values and derivatives are available, but only stochastic approximations of the objective function and its associated derivatives can be computed via inexact probabilistic zeroth- and first-order oracles. Under reasonable assumptions, a high-probability bound on the iteration complexity of the algorithm to approximate first-order stationarity is derived. Numerical results on standard nonlinear optimization test problems illustrate the advantages and limitations of our proposed method.
translated by 谷歌翻译